SMARTER BINARY SYSTEMS DELIVERED.
They believe in us
Turn geothermal source into useful power

Heat from the ground can be used as an energy source and it can be found in many regions of the world, especially at tectonic plate boundaries or at places where the crust is thin enough to let the heat through. The most common way of capturing energy from geothermal resources is to tap into naturally occurring hydrothermal convection systems, where cooler water seeps into earth’s crust and is heated up within a reservoir.

Turboden is a global leader in the design, manufacture and maintenance of geothermal binary Organic Rankine Cycle (ORC) systems for power production, particularly suitable for the exploitation of low-to-high enthalpy sources. Turboden delivers cost-effective solutions with power outputs of up to 20 MWe per single turbine and geothermal fluid temperature at well-head between 100°C and 200°C.
Binary ORC plants exploit geothermal fluid to heat up and vaporize a secondary organic fluid that drives a turbine and produces electric power. In this way, the geothermal fluid remains within a closed loop of piping (from the reservoir to the reinjection) without passing through the turbine, with no harmful emissions into the atmosphere. The heat that is not converted into electricity can be delivered to a thermal user or dissipated through a suitable cooling system. ORC is very effective for exploiting resources with high steam fractions at locations where it is not convenient to collect and deliver all the fluids to a centralized station, but preferable to employ modular well-head units. Existing single-flash power plants can be improved by adding an ORC system on the separated brine stream, before reinjection. This makes it possible to produce more power from the same geothermal resource.
Why choose Turboden binary system?

- ZERO EMISSIONS AND FULL REINJECTION ACHIEVABLE
- NO CORROSION AND NO SCALING IN THE TURBINE
- HIGH STEAM AND BRINE HEAT CONVERSION – CYCLE EFFICIENCY UP TO 25%

- multi-stage axial turbine
  - less sensitive than radial turbines to ambient temperature variations, showing nearly constant efficiency over a wide range of operating conditions
  - the most widely adopted in turbomachinery design, proven with billions of working hours worldwide
- more than 90% turbine isentropic efficiency achieved
- more than 60 different turbines developed on 4 standard frames
- 10 different working fluids (hydrocarbons, HFCs, HFOs)
- patented seal and bearing replacement system
- direct drive: rotation speed from 1,500 rpm to 3,000 rpm
- robust design, low vibration, and strict quality tests in collaboration with the Mitsubishi team
The ORC turbogenerator makes use of a closed thermodynamic cycle to convert heat into electricity. The thermal power recovered from the geothermal source (single or dual-phase) vaporizes a suitable organic working fluid, which then expands in the turbine and produces clean and reliable electric power by means of the alternator. After passing through the recuperator for internal heat recovery, the vapour is cooled down, condensed and finally pumped back to start the cycle again.
From words to deeds

**STADTWERKE MÜNCHEN - GERMANY**
- SCOPE OF SUPPLY: EPC supply of three power plants and above-ground steam system
- SIZE: 5 MWe, 5.6 MWe, 5.6 MWe
- PRODUCTION: electric power and heat to district heating network
- HEAT SOURCE: geothermal water at about 140°C

**GEOTHERMISCHE KRAFTWERKSGESELLSCHAFT TRAUNREUT - GERMANY**
- SCOPE OF SUPPLY: EPC supply of the power plant and above-ground steam system
- SIZE: 4.1 MWe
- STATUS: in operation since 2016
- PRODUCTION: electric power and heat to district heating network
- HEAT SOURCE: geothermal water at 118°C

**AFJET - TURKEY**
- SCOPE OF SUPPLY: supply of the ORC power plant
- SIZE: 3 MWe
- STATUS: in operation since 2016
- PRODUCTION: electric power
- HEAT SOURCE: geothermal water at 110°C

**MB HOLDING - CROATIA**
- SCOPE OF SUPPLY: supply of the ORC power plant and design of above-ground steam system
- SIZE: 17.5 MWe
- STATUS: in operation since 2018
- PRODUCTION: electric power
- HEAT SOURCE: geothermal water and steam at 170°C
GEIE - EXPLOITATION MINIÈRE DE LA CHALEUR - FRANCE
- SCOPE OF SUPPLY: EPC supply of the power plant
- SIZE: 1.7 MWe
- STATUS: in operation since 2016
- PRODUCTION: electric power
- HEAT SOURCE: geothermal water at 160°C

MITSUBISHI HEAVY INDUSTRIES - JAPAN
- SCOPE OF SUPPLY: ORC engineering, supply of the turbine and generator
- SIZE: 6 MWe
- STATUS: in operation since 2015
- PRODUCTION: electric power
- HEAT SOURCE: geothermal water and steam at 140°C

GEOTHERMIE HOLZKIRCHEN - GERMANY
- SCOPE OF SUPPLY: supply of the ORC power plant
- SIZE: 3.4 MWe
- STATUS: in operation since 2019
- PRODUCTION: electric power and heat to district heating network
- HEAT SOURCE: geothermal water at 152°C

CYRQ ENERGY - USA
- SCOPE OF SUPPLY: supply of the ORC power plant
- SIZE: 14 MWe
- STATUS: in operation since 2018
- PRODUCTION: electric power
- HEAT SOURCE: geothermal water at 154°C
Turboden benefits from the Mitsubishi Heavy Industries global network in a number of ways, including financial stability, sharing of business practices (including customer warranties) and technology development.

With 40 years of experience, a global presence, 630+ MWe installations, and 380+ plants in 45 countries, Turboden is a market leader in the proprietary design and manufacturing of ORC optimized turbines.

Optimized solutions for each customer and a qualified service department exclusively dedicated to customer assistance.
Feel our strengths

FLEXIBILITY
- High availability (98%+)
- Long life

SUSTAINABILITY
- Range size up to 20 MW per single shaft
- Different primary energy sources
- Large rangeability
- Cogeneration or power-only mode
- Ease of integration
- Island mode

TURBODEN ORC
- Core system for renewable energy and energy efficiency
- Clean generation of power and heat
- Reduction of CO₂ emissions

EASY TECHNOLOGY
- Simple technical features: low pressures involved, low speed turbine, limited number of stages of the turbine (≤6), self-lubricating fluids, no water required
- Easy and cost-effective operation & maintenance: automatic operation (no qualified operator required), minimal maintenance activities, no major overhaul (turbine not subject to erosion or corrosion), fast start-stop procedures, no chemical and water treatments, low refilling of fluid required
Always by your side

24/7 SUPPORT*

<2h REACTION TIME

97% PLANTS WITH AFTER-SALES CONTRACTS

*up to

GLOBAL COVERAGE

- 2 service subsidiaries and 5 international service partner companies

CUSTOMIZED SERVICES

- single contact for requests for support
- staff dedicated to on-site and remote technical support
- assistance of an international network of companies able to provide technical support
- wide range of services provided
- prompt assistance and customized after-sales services
- remote technical support using innovative tools
- dedicated spare parts warehouse

CUSTOMER REQUEST OR TURBODEN PLANNED CHECKS

TREND ANALYSIS WITH LOCAL OPERATOR SUPPORT

FOCUSED TEAMWORK AND TECHNICAL DECISIONS

REACTION PLAN: REMOTE OR ON-SITE

SATISFIED CUSTOMER
Meet our global and proven experience

PLANTS: 384
COUNTRIES: 45
TOTAL CAPACITY: 630 MWe
CUMULATIVE OPERATION TIME: 15 million hours
AVERAGE AVAILABILITY: 98+% Update September 2019

Geo
PLANTS: 14
TOTAL CAPACITY: 86.4 MWe