TURBODEN
LARGE HEAT PUMP

MORE HEAT OUT OF HEAT.
WHY HEAT PUMPS?

Because they play a key role in the electrification of heat in an increasingly decarbonised power grid. With heat pumps, we wish to play a broader role in the decarbonisation of district heating and energy-intensive industries.
TURBODEN LARGE HEAT PUMPS

Large Heat Pumps are utility-scale heating plants that allow to transfer large quantities of heat from a colder source, like groundwater or waste heat, to a higher temperature heat user, like a district heating network or an industrial process. Turboden specializes in large scale, electrical heat pumps, based on turbocompressor technology.

KEY POINTS

- Large-scale: output from 3 MWth to 30 MWth per unit
- High-temperature lift (ΔT up to 80°C and more)
- High-temperature output (including steam generation)
- Various fields of application: geothermal, biomass, waste heat in energy-intensive industries, waste to energy, power plants
FEATURES

Simplicity
✓ Remote monitoring and automatic operation
✓ Simple technical features
✓ Fast start-stop procedures

Flexibility
✓ Fully tailored solutions with optimised performance
✓ Experience with a number of different refrigerants
✓ Ease of integration

Dependability
✓ Several proven technical solutions shared with sister ORC technology
✓ Global after sales service with 24/7 assistance
✓ Long design life

Sustainability
✓ Core system for renewable energy and energy efficiency
✓ Clean generation of higher-grade heat
✓ Non-toxic, low Global Warming Potential (GWP) refrigerants
APPLICATIONS – DISTRICT HEATING

DISTRICT HEATING

ENERGY EFFICIENCY IN
INDUSTRIAL PROCESSES

HEATING & COOLING
OF BUILDINGS

CHP PLANT PREHEATING

HEAT SOURCES

“FREE” HEAT:
- Waste water
- River water
- Sea water (as low as 2-3°C)
- Groundwater

“INCOME GENERATOR” HEAT:
- Power plants waste heat
- Power plants flue gas cleaning
- Power plants heat from CO₂ capture
- Data centers cooling
- Cooling in industrial processes
- District cooling
- Seasonal solar heat storage

Large heat pumps

Copyright © – Turboden S.p.A. All rights reserved
EXAMPLE: STEELWORKS

Heat from the cooling of the steelmaking process can be upgraded through a LHP and used for district heating instead of being wasted, i.e. dissipated through cooling towers.
EXAMPLE: GROUND SOURCE PROJECTS

Even the energy contained in a shallow aquifer at low temperature can be used to feed a LHP and supply heat to a district energy network at higher temperature.
EXAMPLE: GEOTHERMAL WITH ORC

Deep geothermal at high enough temperature is used for power generation through a binary plant – a LHP can extract further energy at low temperature before reinjection and supply a district heating network at suitable temperature.
EXAMPLE: GEOTHERMAL AND GREENHOUSES

Deep geothermal can be used for heat supply to industrial users (e.g. large greenhouses), while a LHP can extract further energy at lower temperature before reinjection and supply a district heating network at suitable temperature.
EXAMPLE: GEOTHERMAL DISTRICT HEATING

- Natural gas
- CHP gas engine (optional)
- LARGE HEAT PUMP
- District heating network
- Production well & reinjection well
- REINJECTION WELL & PRODUCTION WELL
- 90°C → 60°C
- 60°C → 30°C
- 60°C

Large heat pumps

Copyright © – Turboden S.p.A. All rights reserved
EXAMPLE: GEOTHERMAL DISTRICT HEATING

Deep geothermal can be used to supply heat to a district heating network through direct exchange in a heating plant, while a LHP can extract further energy at lower temperature before reinjection and feed the heating grid at suitable temperature.

Diagram Description:
- **Natural Gas** → **LHP** (optional) → **Intermediate Load** → **District Heating Network**
- **Deep Geothermal** (100°C) → **Heating Plant** (65°C) → **Large Heat Pump** → **Intermediate Load** → **District Heating Network**
- **Reinjection & Production Wells**

Key Temperatures:
- 100°C (Deep Geothermal)
- 65°C (Heating Plant)
- 90°C (Intermediate Load)
- 60°C (Reinjection & Production Wells)
- 90°C (District Heating Network)
CASE STUDY: WASTE TO ENERGY PLANT

Pollutant abatement in flue gas through quenching and recovery of condensation heat: projects of this kind are becoming common in Northern Europe (e.g. Scandinavia) and there is a high potential for replication.
CASE STUDY: INDUSTRIAL PARK

The Large Heat Pump generates large quantities of steam exploiting a colder energy source that would otherwise be wasted, eventually dissipated by cooling towers. Hence, a neighbouring industrial process can benefit from this new higher-grade source of heat.
APPLICATIONS – INDUSTRIAL PROCESSES

ENERGY EFFICIENCY IN INDUSTRIAL PROCESSES

- **HEATING & COOLING OF BUILDINGS**
- **CHP PLANT PREHEATING**

HEAT SOURCES

- Cooling in industrial processes
- Power plants waste heat
- Other waste heat
- Waste water
- Ground source

![Diagram of heat pump system](image)

- Higher temperature process heat (incl. steam)
- Condenser
- Compressor
- Evaporator
- Condenser
- Electric power (from the grid or dedicated power plants)
- Waste heat
EXAMPLE: CHEMICAL PLANT

The low-grade heat that needs to be dissipated to cool a distillation column (N.1) can feed a LHP and therefore be used to displace other sources of higher-temperature heat in another distillation column (N.2).

- COP tends to be lower due to higher lift, hence more challenging.
- May require special (more costly) materials.
- Year-round (potentially >8,000 hrs_{eq} / y) waste heat valorisation thanks to internal re-use.
SINCE 1980

Turboden is an Italian firm and a global leader in the design, manufacture, and maintenance of Organic Rankine Cycle (ORC) systems, highly suitable for distributed generation, which produce electric and thermal power exploiting multiple sources.

Thanks to its long experience in the energy efficiency sector, today Turboden expands its solutions offering with large heat pumps and gas expanders.
Prof. Mario Gaia makes experience in the field of ORC within his research group at Politecnico di Milano.

1976
1st ORC prototype.

1980
Prof. Mario Gaia founds Turboden.

1998
1st ORC biomass plant.

‘90-2000
Turboden enters geothermal, waste heat recovery and solar markets.

2000-2009
Turboden becomes leader in Europe with its biomass plants.

2013
MHI acquires the majority of Turboden.

2019
Turboden launches new products, LHP and EXP.

2020

MILESTONES

<table>
<thead>
<tr>
<th>ORC SIZES AVAILABLE</th>
<th>ORC PLANTS INSTALLED</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 kW</td>
<td>1</td>
</tr>
<tr>
<td>1 - 2 - 4 MW</td>
<td>100</td>
</tr>
<tr>
<td>5 - 8 - 10 MW</td>
<td>220</td>
</tr>
<tr>
<td>20 MW</td>
<td>390+</td>
</tr>
</tbody>
</table>
GLOBAL AND PROVEN EXPERIENCE

A worldwide presence in **50 countries** with **400+ plants**

- **19 million hours** cumulative operation time
- **25 thousand GWh** electrical energy generated
- **98+ %** average availability

Last update: April 2022
WHY TURBODEN

MITSUBISHI HEAVY INDUSTRIES GROUP

- Turboden fully embraces the values, philosophy and vision of its parent company MHI
- Turboden leverages the financial stability of its parent company and the technical support to satisfy customer needs

CAPABILITIES & EXPERIENCE

- With 40 years of experience, Turboden holds the know-how of the ORC technology
- Excellence in R&D and turbine design
- Total capacity of 750+ MWe, 400+ plants, 50 countries
- Global presence

CUSTOMER ORIENTATION

- Always dedicated to the success projects of the customers
- Prompt assistance and customized after-sales service
- Ready to provide optimized solutions for the clients
- High availability
- High customer satisfaction

Large heat pumps
DEDICATED AFTER-SALES SERVICE

Qualified staff is exclusively dedicated to the customer assistance, both from remote and on-site, with the aim of optimizing the management of the plants. The customer can choose the most suitable service package thanks to the wide range of services offered.

COVERAGE

- 2 service subsidiaries and 5 international service partner companies.

ASSISTANCE

Turboden 24/7, the call center service h24, 7 days per week.

CUSTOMISED SERVICES

- single contact for requests for support
- staff dedicated to on-site and remote technical support
- assistance of an international network of companies able to provide technical support
- wide range of services provided
- prompt assistance and customized after-sales services
- remote technical support using innovative tools (TOS – Turboden Online Service)
- dedicated spare parts warehouse
R&D – THE INNOVATION

TURBOMACHINES
Over 60 different axial turbines, from 2 to 6 stages reaching up to 20 MW of power and in some cases exceeding isentropic efficiency 90%.

The new compressor shares a number of technical features and solutions with Turboden turbine.

WORKING FLUIDS
A deep understanding of fluid properties, thermal stability and flammability permits the usage of over 10 different working fluids.

Some of the working fluids are used with temperatures > 300°C in ORC systems.

DIRECT EXCHANGE
Pioneer in the development of systems with Direct Exchange between hot gas (the primary heat source) and the ORC working fluids, reducing the investment cost and improving the ORC performances.

NEW PRODUCTS
Pioneer in the development of innovative solutions in the ORC space, now extending its reach to related technologies like Large Heat Pumps and Gas Expanders.
AN EXTENSIVE NETWORK OF INSTITUTIONAL RELATIONS

<table>
<thead>
<tr>
<th>ANIMA</th>
<th>Associazione Industriale Bresciana</th>
<th>Bioenergy Europe</th>
<th>CanGEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federazione delle Associazioni Nazionali dell'Industria Meccanica Varia ed Affini</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COGEN</td>
<td>CONFINDUSTRIA</td>
<td>EGECE</td>
<td>ehpa</td>
</tr>
<tr>
<td>Europe</td>
<td></td>
<td></td>
<td>European heat pump association</td>
</tr>
<tr>
<td>Energy Efficiency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Financial Institutions Group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONFINDUSTRIA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EUROHEAT & POWER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>European Commission</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>European Parliament</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy Efficiency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Financial Institutions Group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geothermal Association of Kenya</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geothermal Resource Centre</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>International Solid Waste Association</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISWA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITALOGEN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lombardy Energy Cluster</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LE2C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIFE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIFE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OrUpdateTurkey</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turkish Chamber of Commerce and Industry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turkish Energy And Clean Energy Techn. Association</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Large heat pumps