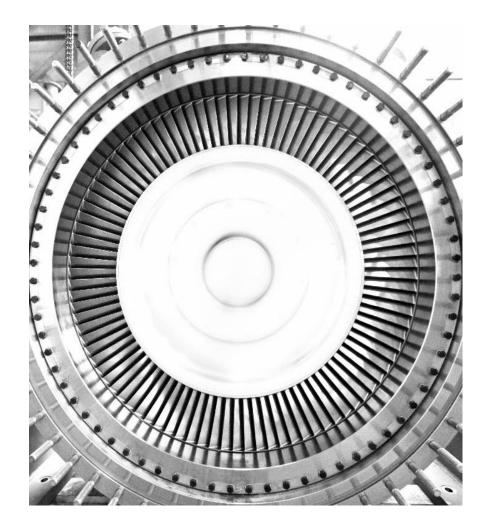


MOVE THE WORLD FORW>RD MITSUBISHI HEAVY INDUSTRIES GROUP

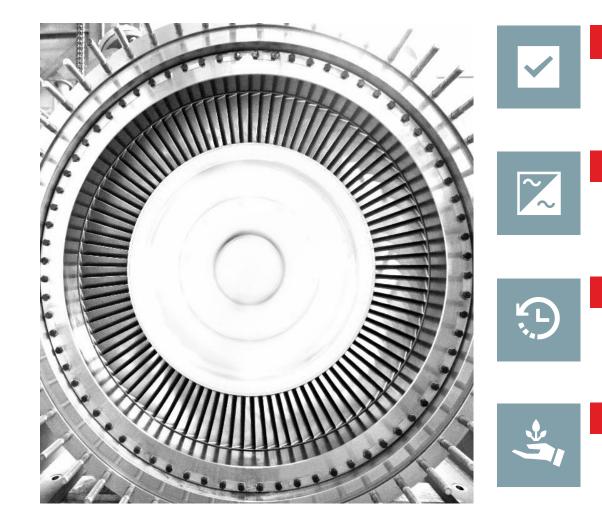
Cod. 20-COM.P-1-rev.2


INCREASE YOUR ENERGY EFFICIENCY WITH OUR SOLUTIONS.

TURBODEN FOR COMBINED CYCLES

We provide smart, efficient and water-free solutions to close your open cycle power plant.

ORC SYSTEM


Turboden Organic Rankine Cycle (ORC) units can produce electricity by recovering residual low-grade heat from **industrial processes** and from **internal combustion engines**, **gas turbines**, and fuel cells operating on open cycle. The generated power ranges up to **20 MW electric** per single shaft.

WHY CHOOSE ORC FOR ENERGY EFFICIENCY?

- Generate profit by valorising a waste heat source
- Reduce specific production cost by decreasing energy demand
- Improve company sustainability
- Contribute to lower carbonisation and combat climate change

ORC SYSTEM FEATURES

Simplicity

- Remote monitoring and automatic operation
- No water use and treatment required
- Minimal maintenance activities

Flexibility

- Ease of integration
- Excellent part load capability down to 10% load
- Different primary energy sources

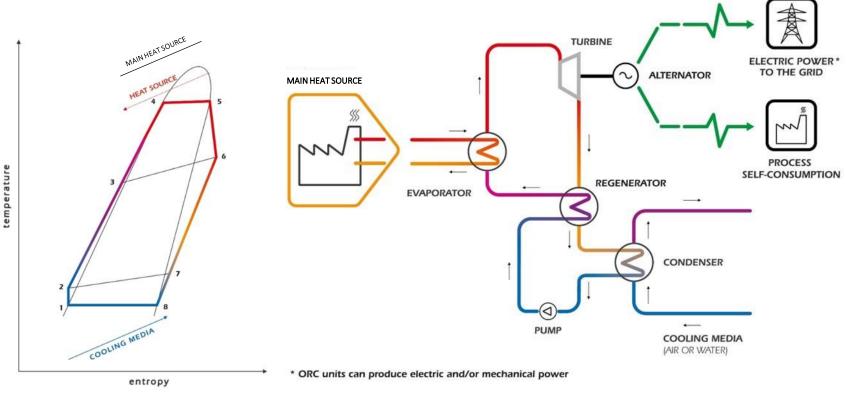
Dependability

- High availability
- Long life (> 25 years)
- 40 years in the design and production of turbomachinery

Sustainability

- Core system for renewable energy and energy efficiency
- Clean generation of power and heat
- Reduction of CO_2 emissions

THE ORC CYCLE – HOW IT WORKS


The ORC turbogenerator uses mediumto-high temperature thermal oil to preheat and vaporize a suitable organic working fluid in the evaporator (4>5).

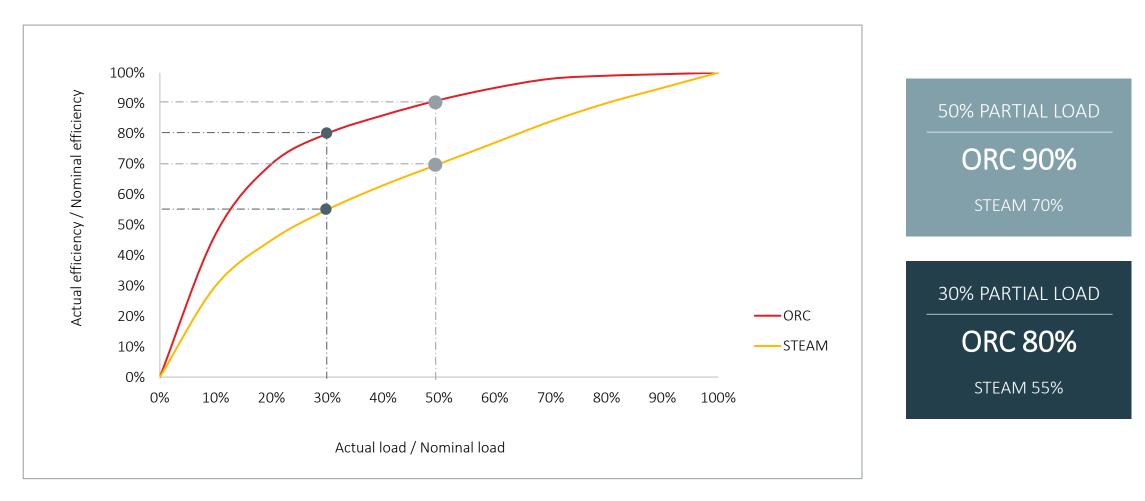
The organic fluid vapor rotates the turbine (5>6), which is directly coupled to the electric generator, resulting in clean, reliable electric power.

The exhaust vapor flows through the regenerator (6>7), where it heats the organic liquid (2>3) and is then condensed in the condenser and cooled by the cooling circuit (7>8>1).

The organic working fluid is then pumped (1>2) into the regenerator and evaporator, thus completing the closedcycle operation.

The waste heat from production process is transferred to the ORC working fluid by means of an intermediate circuit or directly via the exhaust gases in direct exchange systems. The media used in the intermediate circuits are thermal oil, saturated steam or superheated water.

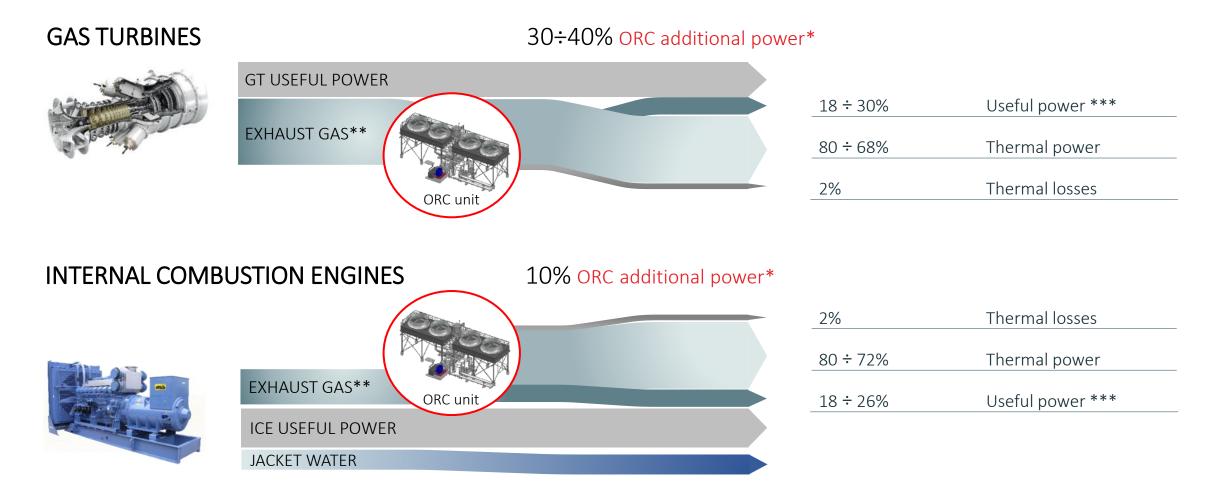
THERMODYNAMIC CYCLE: ORC VS STEAM


	STEAM RANKINE CYCLE	ORGANIC RANKINE CYCLE	
	entropy	Portugation of the second seco	
Thermodynamic features and consequences	 Superheating needed Risk of blade erosion due to possible liquid formation during the expansion High enthalpy drop – turbine with high stage number 	 No need to superheat No risk of blade erosion thanks to dry expansion in the turbine Small enthalpy drop -turbine with low stage number 	
Operation and maintenance costs	 Water treatment required Highly skilled personnel needed Periodic major overhaul 	 Water-free system Minimum Operation & Maintenance cost No major overhaul Completely automatic 	
Other features	 Low flexibility with significantly lower performances at partial load Convenience for large plants and high temperatures 	 High flexibility - Wide operational range from 10% to 110% High availability (average >98%) 	

0

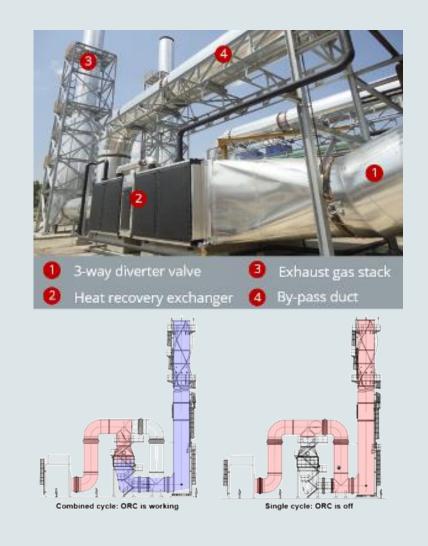
Ot

COMPARISON WITH STEAM TECHNOLOGY



NOTE: steam turbine suffers partial load operation due to high risk of blade erosion.

OVERALL PLANT PERFORMANCES


* ORC power output compared to GT or ICE shaft capacity (e.g. 10 MW GT \rightarrow 3÷4 MWe ORC; 10 MW ICE \rightarrow approx. 1 MWe ORC).

** Min. flow to ORC: from GT 10-15 kg/s; from ICE 30-40 kg/s.

*** Mechanical and/or electric, calculated on thermal power input to ORC.

EXHAUST GAS HEAT RECOVERY EXCHANGER CONFIGURATION

- EGHEs installed in by-pass to the main exhaust gas ducting in order to avoid any impact on the gas turbines operation in any circumstance.
- EGHEs completely isolable with a diverter prior to the EGHEs and an insulation valve right after it. Diverter equipped with air sealing to ensure 100% insulation. This permits to insulate the EGHEs, ensuring gas turbines operation even in case of major issues on the EGHEs.
- Pneumatic safety-closed diverter to avoid any impact on gas turbines operation even during emergency situation.
- EGHE equipped with sparking detector, flame detector and thermocouples in different bundle position to ensure the maximum safety of the system.
- False air fan installed in order to keep the EGHE temperature at acceptable level even in case of gas turbines particular operation cases.

NEW SOLUTION FOR COMBINED CYCLE POWER PLANTS

Suitable for remote areas

thanks to its automated operation and high safety standards

Affordable electricity

producing power with high efficiency

Lower emissions

compared to other technologies typically used in desolated areas

Heat ReCycle by Siemens as integral solutions provider with Turboden ORC technology.

Water-free

allowing water to be used for people, not power

REFERENCES

TURBODEN REFERENCES IN COMBINED CYCLES

PLANT	COUNTRY	START UP	ORC SIZE (MWe)	HEAT SOURCE
TRANSGAS	Canada	2011	1	Solar Centaur 40 gas turbine in gas compressor station
UZTRANSGAZ	Uzbekistan	2021	1	3 GE LM 1600 gas turbines in gas compressor station
GASCO	Egypt	under construction	24	5 X 30 MWe gas turbines (4 in operation, 1 in stand-by) in gas compressor station
PISTICCI I	Italy	2010	1.8	3 x 8 MWe Wärtsilä diesel engines
TERMOINDUSTRIALE	Italy	2008	0.5	1 x 8 MWe MAN diesel engine
PISTICCI II	Italy	2012	4	2 x 17 MWe Wärtsilä diesel engines
CEREAL DOCKS	Italy	2012	0.5 (direct exchange)	1 x 7 MWe Wärtsilä diesel engine
E&S ENERGY	Italy	2010	0.6	2 x 1 MWe Jenbacher gas engines + 3 x 0.8 MWe Jenbacher gas engines + 1 x 0.6 MWe Jenbacher gas engine – landfill gas
ULM	Germany	2012	0.7	2 x 2 MW Jenbacher gas engines (+ additional heat from process)
KEMPEN	Germany	2012	0.6	Gas engines
MONDO POWER	Italy	2012	1	1 x 17 MWe Wärtsilä diesel engine
HSY	Finland	2011	1.3	4 x 4 MWe MWM gas engines – landfill gas
FATER	Italy	2013	0.7 (direct exchange)	1 x 8 MWe Wärtsilä diesel engine
ORTADOGU I	Turkey	under construction	2 x 2.3	28 x 1.4 MWe Jenbacher engines + 4 x 1.2 MWe MWM engines – landfill gas
ORTADOGU II	Turkey	2020	2.3	12 x 1.4 MWe Jenbacher engines – landfill gas
BIOGASTECH	Belgium	2019	0.7	4 x 3.3 MWe Jenbacher gas engines

TRANSGAS

CUSTOMER:

TransGas

COUNTRY: Canada

STATUS: in operation since 2011

DESCRIPTION:

power generation from waste heat from Solar Centaur 40 gas turbine in a gas compressor station

ORC ELECTRIC POWER: 1 MW (more than 28% of gas turbine shaft power)

GAS TURBINE PRIME POWER: 3.5 MWm

GAS TURBINE EFFICIENCY: 28%

UZTRANSGAZ

CUSTOMER: Uztransgaz

COUNTRY: Uzbekistan

STATUS: in operation since 2021

DESCRIPTION:

power generation from waste heat from 3 GE LM 1600 gas turbines in Hodzhaabad gas compressor station operated by Uztransgaz

ORC ELECTRIC POWER:

1 MW - island mode operation. The ORC unit covers the compressor station captive consumption

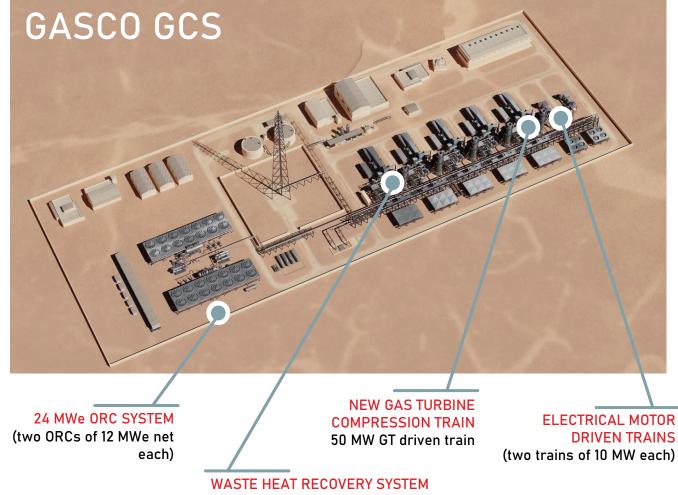
FEATURES:

solution with air-cooled condenser, no water needed, containerized solution

DAHSHOUR

CUSTOMER: GASCO

COUNTRY: Egypt


STATUS: under construction

DESCRIPTION:

power generation from waste heat from 5 simple cycle GTs (4 in operation 1 in standby) in gas compressor station.

ORC ELECTRIC POWER:

24+ MWe to feed 2 electrical motor driven compressors of 10 MW each that will empower compressor station pumping capacity.

WASTE HEAT RECOVERY SYSTEM one WHR exchanger for each GT (4 existing GTs + 1 new GT)

CEREAL DOCKS

CUSTOMER: Cereal Docks

COUNTRY:

Italy

STATUS: in operation since 2012

DESCRIPTION:

power generation from exhaust gas of 1 x 7 MWe Wärtsilä diesel engine

ORC ELECTRIC POWER: 0.5 MW

HEAT CARRIER: none – direct exchange

COOLING SYSTEM:

water cooled condenser + air coolers (closed water loop)

HSY

CUSTOMER: Helsinki Region Environmental Services Authority HSY

COUNTRY:

Finland

STATUS: in operation since 2011

DESCRIPTION:

power generation from exhaust gas of 4 x 4 MWe MWM gas engines – landfill gas

ORC ELECTRIC POWER: 1.3 MW

HEAT CARRIER: thermal oil

COOLING SYSTEM: water cooled condenser + air coolers (closed water loop)

MOVE THE WORLD FORW>RD MITSUBISHI HEAVY INDUSTRIES GROUP

OUR EXPERIENCE. YOUR POWER.